A BREEDING CAGE FOR CATS

by

O. F. JACKSON

and

PATRICIA P. SCOTT

Department of Physiology,
Royal Free Hospital School of Medicine,
8 Hunter Street, London, W.C.1

SUMMARY

A 3-cage mobile unit for littering and rearing kittens is described and illustrated. It is light, easily handled and serviced, provides ready access to the kittens and a comfortable environment for both mother and young, while reducing opportunities for the spread of infection from one litter to another.

During the course of establishing a new cattery an opportunity arose to design and test cages suitable for littering and rearing kittens. The object was to reduce the transfer of respiratory infection from one litter to another while providing good environmental conditions for the queen and her litter. The cage had to occupy a minimum of space consistent with these requirements, and be light enough to be serviced by a technician working without assistance. It was also desired to handle the kittens without interference from the queen and without unduly disturbing her.

Various designs were tested in an attempt to meet the above requirements. The original collapsible cage (Scott, 1952), consisting of a galvanised-steel tray and folding wire-mesh top, was discarded because it was heavy, cumbersome and difficult to service; the tray deteriorated rapidly from the effect of cat's urine and the design did nothing to discourage the spread of air-borne infection. A cage of fibreglass, in the form of a box laid on its long side with the front closed by a wire mesh door, was disappointing in performance. Because of the unavoidable shape of the mould the floor sloped towards the front, so that the cat and kittens slid uncomfortably forward on the smooth surface; food and sawdust were scattered outside the cage. Designs made in sheet aluminium alloy were more satisfactory, particularly when combined with a polypropylene kittening box. These materials have now been in use for 2 years. They are light, yet strong enough to support the cat's weight and sufficiently hard to withstand clawing; they are easy to clean and unaffected by chemical disinfectants. Heat loss is minimal from polypropylene, so that nesting material is not required in the kittening box.
Fig. 1.

The final form of the cage is shown in Fig. 1. It is 90 cm wide × 50 cm high × 62.5 cm deep overall. Sides, back and top are made in 16 gauge (1.63 mm) sheet aluminium alloy (BS 1470/77/NS3 and HE30WP, anodised commercial-quality sulphuric acid BS 1615). The cage is suspended on nylon runners (Fig. 1, a) in a rack, so that it can be pulled forward for removal. The front of the cage is made of spot-welded wire mesh (of the same alloy) 7.5 × 2.5 cm × 12 gauge (2.77 mm) mounted on a 6 gauge (5.17 mm) frame. A central support (Fig. 1, b) carries a detachable door, 37.5 cm wide × 38.7 cm high, that is sufficiently large to allow one to reach in and handle the queen with ease. The drop catch shown in Fig. 1 was not cat-proof and has been replaced by a self-closing catch similar to that used on garden gates in an attempt to overcome this problem. A sliding tray (Fig. 1, d) with rounded corners 58.8 cm wide × 62.5 cm deep into cage, forms the cage floor on one side, that is below the door. This accepts a plastic dirt-box (an unperforated seed box) 24 × 34 × 5 cm deep for sawdust, a water pot (ceramic with in-
CAT BREEDING CAGE

curved lip about 11 cm diameter × 4 cm deep) and a food bowl. The latter are either disposable cardboard 15 cm ‘Unibowls’ (Bowater-Scott Corporation Ltd, Bowater House, Knightsbridge, London, S.W.1) or plastic bowls. These vessels can be put in or removed from the cage without opening the door. To prevent the cat from scattering sawdust outside the tray when using the dirt-box, a strip of aluminium 2 cm wide was rivetted inside the cage at an angle of 60° so that it overhung the edge of the tray (Fig. 1, f). This modification might be improved if the angle was steeper, say 45°, to prevent sawdust resting on the ledge. In fabricating the tray and the cage as a whole, acute angles and all free edges were rounded off to make cleaning easy and prevent damage to hands.

The kittening box, 22.5 cm high × 30 cm wide × 60 cm long (Fig. 1, c and g), was made of heat-welded polypropylene sheet, 4 mm thick (GMT 61 Natural: Shell Chemical Co. Ltd, Villiers House, Strand, London, W.C.1). The box was supported on aluminium-alloy runners at the sides, front and back, and could be pulled forward through a space 22.5 × 30 cm in the front of the cage (Fig. 1, c). The kittens can be examined in this box while the queen is in the other part of the cage. Alternatively, if she is nursing she can be examined with the kittens. A 5 cm lip across the bottom of the open side of the box prevents neonatal kittens from being accidently pushed out of the nest. The roof of the box is strengthened by lengthwise strips of welded polypropylene along the middle and front (Fig. 1, g), to carry the weight of the cat, thus giving her extra ‘living space’ away from her kittens when she climbs onto the top.

Three cages are suspended in a mobile rack of welded tubular steel, 25 mm diameter, finished in epoxy resin. It was 182.5 cm high × 97.5 cm wide × 67.5 cm deep, the gap between cages being less than 1 cm, so that the occupants cannot escape when the tray is pulled out for cleaning. The solid top of the cage beneath forms a temporary floor, a grid being provided below the bottom cage. The legs of the rack are 22 cm long and mounted on 10 cm castors (4 inch, Flexello Castors and Wheels Ltd, Slough, Buckinghamshire), the front pair being provided with brakes.

ACKNOWLEDGEMENTS

We gratefully acknowledge the co-operation of Mr L. V. Holden of North Kent Engineering and North Kent Plastic Cages Ltd, Home Gardens, Dartford, Kent who made and modified the cage for us. Valuable criticism and suggestions for improvements came from Mr P. Rushworth who has used the cage in the cattery. The photograph was made by Miss F. Ellis. Funds were provided by a special grant through the University Grants Committee.

REFERENCE
